2 resultados para HEMIPTERA ALEYRODIDAE

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Als Ergebnis der Revision der Gattung Lygus Hahn (Heteroptera, Miridae, Insecta) wurden die fünf neuen Arten beschrieben: L. sibiricus Aglyamzyanov, 1990, L. orientis Aglyamzyanov, 1994, L. izyaslavi Aglyamzyanov, 1994, L. monticola Aglyamzyanov, 1994 und L. martensi Aglyamzyanov, 2003. Die vier Speziessnamen wurden synonymisiert: L. dracunculi Josifov, 1992, L. alashanensis Qi, 1993, L. renati Schwartz, 1998 (L. elegans Aglyamzyanov, 1994) = L. poluensis (Wagner, 1967) und L. kerzhneri Qi, 1993 = L. punctatus (Zetterstedt, 1838). Artstatus von L. israelensis Linnavuori, 1962 wurde wiederhergestellt. Nach aktuellen Angaben wurden in der Paläarktis 19 Lygus-Arten festgestellt: L. discrepans Reuter, 1906; L. gemellatus (Herrich-Schaeffer, 1835); L. hsiaoi Zheng & Yu, 1992; L. israelensis Linnavuori, 1962; L. italicus Wagner, 1950; L. izyaslavi Aglyamzyanov, 1994; L. maritimus Wagner, 1949; L. martensi Aglyamzyanov, 2003; L. monticola Aglyamzyanov, 1994; L. orientis Aglyamzyanov, 1994; L. pachycnemis Reuter, 1879; L. paradiscrepans Zheng & Yu, 1992; L. poluensis (Wagner, 1967); L. pratensis (Linnaeus, 1758); L. punctatus (Zetterstedt, 1838); L. rugulipennis Poppius, 1911; L. sibiricus Aglyamzyanov, 1990; L. tibetanus Zheng & Yu, 1992 und L. wagneri Remane, 1955. Es wurden die diagnostischen Merkmale analysiert, eine Bestimmungstabelle erstellt und die Areale der Verbreitung der einigen Arten präzisiert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development and the growth of plants is strongly affected by the interactions between roots, rootrnassociated organisms and rhizosphere communities. Methods to assess such interactions are hardly torndevelop particularly in perennial and woody plants, due to their complex root system structure and theirrntemporal change in physiology patterns. In this respect, grape root systems are not investigated veryrnwell. The aim of the present work was the development of a method to assess and predict interactionsrnat the root system of rootstocks (Vitis berlandieri x Vitis riparia) in field. To achieve this aim, grapernphylloxera (Daktulosphaira vitifoliae Fitch, Hemiptera, Aphidoidea) was used as a graperoot parasitizingrnmodel.rnTo develop the methodical approach, a longt-term trial (2006-2009) was arranged on a commercial usedrnvineyard in Geisenheim/Rheingau. All 2 to 8 weeks the top most 20 cm of soil under the foliage wallrnwere investigated and root material was extracted (n=8-10). To include temporal, spatial and cultivarrnspecific root system dynamics, the extracted root material was analyzed digitally on the morphologicalrnproperties. The grape phylloxera population was quantified and characterized visually on base of theirrnlarvalstages (oviparous, non oviparous and winged preliminary stages). Infection patches (nodosities)rnwere characterized visually as well, partly supported by digital root color analyses. Due to the knownrneffects of fungal endophytes on the vitality of grape phylloxera infested grapevines, fungal endophytesrnwere isolated from nodosity and root tissue and characterized (morphotypes) afterwards. Further abioticrnand biotic soil conditions of the vineyards were assessed. The temporal, spatial and cultivar specificrnsensitivity of single parameters were analyzed by omnibus tests (ANOVAs) and adjacent post-hoc tests.rnThe relations between different parameters were analyzed by multiple regression models.rnQuantitative parameters to assess the degeneration of nodosity, the development nodosity attachedrnroots and to differentiate between nodosities and other root swellings in field were developed. Significantrndifferences were shown between root dynamic including parameters and root dynamic ignoringrnparameters. Regarding the description of grape phylloxera population and root system dynamic, thernmethod showed a high temporal, spatial and cultivar specific sensitivity. Further, specific differencesrncould be shown in the frequency of endophyte morphotypes between root and nodosity tissue as wellrnas between cultivars. Degeneration of nodosities as well as nodosity occupation rates could be relatedrnto the calculated abundances of grape phylloxera population. Further ecological questions consideringrngrape root development (e.g. relation between moisture and root development) and grape phylloxerarnpopulation development (e.g. relation between temperature and population structure) could be answeredrnfor field conditions.rnGenerally, the presented work provides an approach to evaluate vitality of grape root systems. Thisrnapproach can be useful, considering the development of control strategies against soilborne pests inrnviticulture (e.g. grape phylloxera, Sorospheara viticola, Roesleria subterranea (Weinm.) Redhaed) as well as considering the evaluation of integrated management systems in viticulture.